Abstract

HIV nucleic acids, one kind of significant biomarker, play an important role in fundamental studies and clinical diagnosis. Importantly, the early accurate diagnosis for HIV nucleic acids at ultralow concentrations can potentially extend the life of patients. In the current work, we developed a DNA nanomachine on gold nanoparticles (AuNPs) coupling rolling circle amplification and DNA walker cascade amplification for ultrasensitive detection of HIV nucleic acids. This DNA nanomachine sensing strategy exhibits a significantly low detection limit down to 1.46 fM. Furthermore, this DNA nanomachine biosensor is capable of detecting target DNA in real samples because of its high selectivity and sensitivity. Moreover, the DNA nanomachine biosensor is capable of discriminating single-base mismatch lower than 3.5 pM. The results showed that this DNA nanomachine biosensor has the potential for biomedical studies and clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.