Abstract

We introduce rational complexity, a new complexity measure for binary sequences. The sequence s ∈ Bω is considered as binary expansion of a real fraction s equiv {sum }_{kin mathbb {N}}s_{k}2^{-k}in [0,1] subset mathbb {R}. We compute its continued fraction expansion (CFE) by the Binary CFE Algorithm, a bitwise approximation of s by binary search in the encoding space of partial denominators, obtaining rational approximations r of s with r → s. We introduce Feedback inmathbb {Q}Shift Registers (Fmathbb {Q}SRs) as the analogue of Linear Feedback Shift Registers (LFSRs) for the linear complexity L, and Feedback with Carry Shift Registers (FCSRs) for the 2-adic complexity A. We show that there is a substantial subset of prefixes with “typical” linear and 2-adic complexities, around n/2, but low rational complexity. Thus the three complexities sort out different sequences as non-random.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.