Abstract
We consider the initial boundary value problem of the Long-Short wave equations on the whole line. Firstly, a three level linear fully discrete pseudospectral scheme are structured based on central difference in time and rational Chebyshev functions in space which are orthogonal in the L2 space with weight 1. Secondly, the first-order differential matrix about rational Chebyshev functions is derived by the first-order differential matrix of Chebyshev polynomials, the entries of the matrix are just Chebyshev polynomials and Chebyshev Gauss collocation points. Thirdly, the numerical implementations are described and numerical results for the rational Chebyshev pseudospectral scheme are verified that a second-order accuracy in time and spectral accuracy in space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.