Abstract

In this study, we propose an efficient and accurate numerical technique that is called the rational Chebyshev collocation (RCC) method to solve the two dimensional flow of a viscous fluid in the vicinity of a stagnation point named Hiemenz flow. The Navier-Stokes equations governing the flow, are reduced to a third-order ordinary differential equation of a boundary value problem with a semi-infinite domain by using similarity transformation. The rational Chebyshev method reduces this nonlinear ordinary differential equation to a system of algebraic equations. This technique is a powerful type of the collocation methods for solving the boundary value problems over a semi-infinite interval without truncating it to a finite domain. We also present the comparison of this work with others and show that the present method is more accurate and efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.