Abstract
AbstractWe present a reliable method to generate planar meshes of nonlinear rational triangular elements. The elements are guaranteed to be valid, i.e. defined by injective rational functions. The mesh is guaranteed to conform exactly, without geometric error, to arbitrary rational domain boundary and feature curves. The method generalizes the recent Bézier Guarding technique, which is applicable only to polynomial curves and elements. This generalization enables the accurate handling of practically important cases involving, for instance, circular or elliptic arcs and NURBS curves, which cannot be matched by polynomial elements. Furthermore, although many practical scenarios are concerned with rational functions of quadratic and cubic degree only, our method is fully general and supports arbitrary degree. We demonstrate the method on a variety of test cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.