Abstract
The development of new catalysts for a variety of chemical processes, molecular-level fundamental understanding of how it works and knowledge of surface science, chemistry, materials science, process modeling, process systems engineering, etc. is needed. Catalyst design and kinetic modeling have long been based on chemical intuition, i.e., the combination of a large empirical database and qualitative concepts of chemical reaction engineering and surface science. Recently the first principle kinetic modeling has become an important tool to investigate catalytic reactions and catalyst structures for superior operational benefits by integrating first principle guided exploration and experimental data. Nanocatalysis design is the building blocks of the concept of micro-level controlled reaction engineering, and the size and shape dependant material properties are the key enabling factor of the emerging technology. The qualitative difference is infect the material properties those changes in 1-10nm scale. Drastic enhancement in capabilities in nanomaterial synthesis with increasing control in size and shape were observed in last two decades but the rational catalyst design criteria is still not mature. Consideration of reaction brings intrinsic complexity in nanomaterial topology development (for a catalyst design) and emphasize on systematic multiscale simulation method to design and forecast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.