Abstract

Herein, we present the facile design and construction of a nanodrug system integrating targeted drug delivery and synergistic chemo-photothermal antitumor activity. MoS2 nanosheets were synthesized and modified by ανβ3 integrin binding peptide (Arg-Gly-Asp, RGD) using lipoic acid functionalized polyethylene glycol (LA-PEG-COOH), forming a well dispersed and targeted delivery nanocarrier. Further, covalent coupling of antitumor drug, thiolated doxorubicin (DOX) via disulfide linkage resulted in a novel nanodrug, RGD/MoS2/DOX. The prepared nanocarrier showed favorable stability, biocompatibility and photothermal conversion efficiency. Fluorescence imaging revealed that Hela cells could endocytose far more nanodrug than H9c2 normal myocardial cells due to the targeted delivery characteristic. Particularly, GSH-induced disulfide bond cleavage facilitated the effective release of DOX from the nanodrug in the tumor microenvironment. The survival rate of Hela cells incubated with the nanodrug for 48h was 22.2±1.2%, which dramatically reduced to 8.9±1.4% in combination with 808nm NIR irradiation, demonstrating powerful photothermal induced tumor-killing efficacy. In contrast, the survival rates of H9c2 cells treated by the nanodrug and free DOX were 68.5±2.6% and 6.7±2.6%, respectively, an indication of the notably alleviated cardiotoxicity of the designed nanodrug. The cell apoptosis experiment further verified the synergistic chemo-photothermal effect, thus paving a way toward design of high-efficiency and low-toxicity antitumor nanodrug.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call