Abstract
Caspase-1 is a key endoprotease responsible for the post-translational processing of pro-inflammatory cytokines IL-1β, 18 & 33. Excessive secretion of IL-1β leads to numerous inflammatory and autoimmune diseases. Thus caspase-1 inhibition would be considered as an important therapeutic strategy for development of newer anti-inflammatory agents. Here we have employed an integrated virtual screening by combining pharmacophore mapping and docking to identify small molecules as caspase-1 inhibitors. The ligand based 3D pharmacophore model was generated having the essential structural features of (HBA, HY & RA) using a data set of 27 compounds. A validated pharmacophore hypothesis (Hypo 1) was used to screen ZINC and Minimaybridge chemical databases. The retrieved virtual hits were filtered by ADMET properties and molecular docking analysis. Subsequently, the cross-docking study was also carried out using crystal structure of caspase-1, 3, 7 and 8 to identify the key residual interaction for specific caspase-1 inhibition. Finally, the best mapped and top scored (ZINC00885612, ZINC72003647, BTB04175 and BTB04410) molecules were subjected to molecular dynamics simulation for accessing the dynamic structure of protein after ligand binding. This study identifies the most promising hits, which can be leads for the development of novel caspase-1 inhibitors as anti-inflammatory agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.