Abstract

We consider the fully parity‐time (PT) symmetric nonlocal (2 + 1)‐dimensional nonlinear Schrödinger (NLS) equation with respect to x and y. By using Hirota's bilinear method, we derive the N‐soliton solutions of the nonlocal NLS equation. By using the resulting N‐soliton solutions and employing long wave limit method, we derive its nonsingular rational solutions and semi‐rational solutions. The rational solutions act as the line rogue waves. The semi‐rational solutions mean different types of combinations in rogue waves, breathers, and periodic line waves. Furthermore, in order to easily understand the dynamic behaviors of the nonlocal NLS equation, we display some graphics to analyze the characteristics of these solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.