Abstract

The KP hierarchy reduction method is one of the most reliable and efficient techniques for determining exact solitary wave solutions to nonlinear partial differential equations. In this paper, according to the KP hierarchy reduction technique, rational and some other semi-rational solutions to the (2 + 1)-dimensional Maccari system are investigated. It is shown that two different types of breathers can be derived, and under appropriate parameter constraints, they can be reduced to some well known solutions, involving the homoclinic orbits, dark soliton or anti-dark soliton solution. For the dark and anti-dark solution, its interaction is similar to a resonance soliton. Furthermore, by using a limiting technique, we derive two kinds of rational solutions, one is the lump and the other one is the rogue wave. After constructing these solutions, we further discuss the interactions between the obtained solutions. It is interesting that we obtain a parallel breather and a intersectional breather, which seems very surprising. Finally, we also provide a new three-state interaction, which is composed by the dark-soliton, rogue wave and breather and has never been provided for the Maccari system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.