Abstract

In consequent extension of Cantor’s theory of ordinal numbers 0, 1, 2, …ω,ω + 1, ω + 2, …ω・2, ω・2+1, ω・2+2, …… ω2, ……… , non-Archimedean number models for the real axis have been constructed by Sikorski [9] and, independently, Klaua [4, 5]. Reference [9] introduced integral and rational ordinal numbers; references [4, 5] introduced integral, rational, and real ordinal numbers. The purpose of these constructions is to extend the real axis into the transfinite, at the same time as refining it infinitesimally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.