Abstract

In this paper, a ratiometric approach to sensing temperature variations is shown using specialty fiber optic devices. We analyzed the transmission response of cascaded segments of multicore fibers (MCFs), and dissimilar lengths were found to generate an adequate scheme for ratiometric operation. The perturbation of optical parameters in the MCFs translates to a rich spectral behavior in which some peaks increase their intensity while others decrease their intensity. Thus, by selecting opposite-behavior peaks, highly sensitive ratiometric measurements that provide robustness against spurious fluctuations can be performed. We implemented this approach using seven-core fiber (SCF) segments of 5.8 cm and 9.9 cm. To test the system's response under controlled perturbations, we heated one of the segments from ambient temperature up to 150 °C. We observed defined peaks with opposite behavior as a function of temperature. Two pairs of peaks within the interrogation window were selected to perform ratiometric calculations. Ratiometric measurements exhibited sensitivities 6-14 times higher than single-wavelength measurements. A similar trend with enhanced sensitivity in both peak pairs was obtained. In contrast to conventional interferometric schemes, the proposed approach does not require expensive facilities or micrometric-resolution equipment. Moreover, our approach has the potential to be realized using commercial splicers, detectors, and filters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.