Abstract

A new ratiometric fluorescent strategy for detection of alizarin red (ARS) was designed based on the fluorescence of CDs and scattered light of scatterer. The CDs-ARS system can be used to detect Pb2+ based on that the complexation between ARS and Pb2+. With the addition of ARS, the fluorescence of CDs was apparently quenched via inner filter effect (IFE). Resonance Rayleigh Scattering (RRS) at 350nm was enhanced by an increase in the number of scatterer. The value of ln(I350/I425) was linearly correlated with ARS concentration in the range of 0-80μM, and the detection limit for ARS was calculated to be 68.1nM. When Pb2+ was added to the CDs-ARS system, the complexation of ARS with Pb2+ increased the size of the scatterer, resulting in the increase of the RRS intensity at 350nm. Due to the affinity between ARS and Pb2+, the overlap of the emission spectra of CDs and the absorption spectra of ARS was reduced, resulting in the IFE effect was inhibited and the recovery of the fluorescence of CDs. The value of I350/I425 linearly increased with the addition of Pb2+ within the range of 10-50μM, the limit of detection was 36.8nM. As for practical application, CDs and CDs-ARS were applied to detect ARS and Pb2+ in tap water and poor water, respectively. The recovery values were obtained to be 95.4-98.8% and 93.4-101.7%. Furthermore, the system of CDs-ARS has been successfully applied to H1299 cell imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.