Abstract

Owing to the high risk to human and environmental health, heavy metal pollution has become a global problem. Rapid, accurate and multiplexed determination of heavy metal ions is critical. In this work, we reported a promising approach to designing ratiometric fluorescent nanoprobes for multiplexed determination of Hg2+, Cu2+, and Ag+ ions. The nanoprobes (CDs-QDx) were designed by mixing the CDs and multicolor CdTe QDs without the involvement of recognition elements. The CDs were insensitive to heavy metal ions while CdTe QDs showed the size-dependent fluorescence response to different heavy metal ions, thereby establishing a ratiometric detection scheme by measuring the fluorescence intensity ratios of CDs-QDx systems. By evaluating the detection performance, the CDs-QDx (x = 570, 650, and 702) were successfully used for differentiation and quantification of Hg2+, Cu2+, and Ag+ ions. In addition, we also carried out the detection of heavy metal ions in actual samples with acceptable results. We believed that this work offers new insight into the design of ratiometric fluorescent nanoprobe for multiplexed determination of not only heavy metals but also some other analytes by combining the CDs with CdTe QDs with fine-tuned sizes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call