Abstract

For intracellular molecular detection, the appropriate probes should include the abilities to enter target cells noninvasively, target specific sites, and then respond to the analytes reliably. Herein, a ratiometric fluorescent DNA nanostructure (RFDN) was designed for mitochondrial adenosine triphosphate (ATP) imaging in living cells. The DNA nanostructure was constructed by continuous hybridization of two hairpin DNA strands (HS1-Cy3 and HS2-Cy5) under the initiation of the trigger. HS1-Cy3 and HS2-Cy5 contained split aptamer fragments of ATP and are labeled with a fluorescent donor (Cy3) and acceptor (Cy5), respectively. The RFDN integrated multiple split aptamer fragments and increased the local concentration of sensing probes. The binding of ATP to aptamer fragments on the RFDN shortened the distance between Cy3 and Cy5, resulting in obvious ratiometric signals (fluorescence resonance energy transfer). The RFDN showed good biocompatibility and can be internalized into cells in a caveolin-dependent endocytosis pathway. The co-localization imaging results indicated that the DNA nanostructure could target the mitochondria via Cy3 and Cy5. Moreover, the confocal imaging results showed that the intracellular ATP changes stimulated by drugs in living cells could be indicated by the RFDN. In this way, the RFDN is expected to be a simple, flexible, and general platform for chemo/biosensing in living cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call