Abstract
Ratiometric fluorescent detection using dual emission bands is highly necessary to quantify Pb(II) in aquatic environment and live cells. We synthesized a ratiometric fluorescent peptidyl probe (1) by conjugation of a peptide receptor for Pb(II) with an excimer-forming benzothiazolylcyanovinylene fluorophore. The peptidyl probe dissolved well in aqueous solution and displayed an emission band at 538 nm (λex = 460 nm). Upon addition of Pb(II) (0–20 μM), the emission maximum shifted from 538 nm to 575 nm and the emission intensity ratio (I575 /I538) increased significantly from 0.40 to 2.26. 1 exhibited a selective ratiometric response to Pb(II) over other metal ions. 1 with a low detection limit (1.2 ppb) of Pb(II) detected nanomolar concentrations (0–500 nM) of Pb(II) ions in groundwater and tap water. The cell-permeable probe detected intracellular Pb(II) by ratiometric fluorescent images. The binding mode study using NMR, IR and CD spectroscopy, and TEM revealed that the probe formed a 1:1 complex with Pb(II) and then formed red-emissive nanoparticles and fibrils. The probe exhibited desirable detection properties such as ratiometric detection, high solubility in water, visible light excitation, high selectivity and sensitivity for Pb(II), cell-permeability, and rapid response (< 6 min).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.