Abstract

The sensitive detection of cancer-associated exosomal microRNAs shows enormous potential in cancer diagnosis. Herein, a ratiometric fluorescent biosensor based on self-assembled fluorescent gold nanoparticles (Au NPs) and duplex-specific nuclease (DSN)-assisted signal amplification was fabricated for sensitive detection of colorectal cancer (CRC)-associated exosomal miR-92a-3p. In this biosensing system, the hairpin DNA modified with sulfhydryl and fluorescent dye Atto-425 at both ends is conjugated to fluorescent Au NPs through Au-S bonds, resulting in the quenching of Atto-425. The miR-92a-3p can open the hairpin of DNA and forms an miR-92a-3p/DNA heteroduplex, triggering the specific cleavage of DSN for the DNA in the heteroduplex. As a result, Atto-425 leaves the fluorescent Au NPs and recovers the fluorescence emission. The released miR-92a-3p can hybridize with another hairpin DNA and lead to a stronger fluorescence recovery of Atto-425 to form a signal amplification cycle. The stable fluorescence of Au NPs and the changing fluorescence of Atto-425 constitute a ratiometric fluorescent system reflecting the concentration of miR-92a-3p. This biosensor exhibits excellent specificity and can distinguish CRC patients from healthy individuals by detecting miR-92a-3p extracted from clinical exosome samples, showing the potential in CRC diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call