Abstract

A novel optical nanoprobe based on silicon quantum dots (SiQDs) has been assembled through a one-pot low-temperature (40 °C) treatment by using 3-(aminopropyl)trimethoxysilane (APTMS) and ascorbic acid (AA) as two precursors. The water-soluble SiQDs demonstrate intense green luminescence in aqueous environment and the excitation-dependent feature has been explored. Meanwhile, the incorporation of salicylaldehyde (SA) serves to suppress the emission of SiQDs effectively via nucleophilic reaction and an "on-off" change is observed. Furthermore, the addition of Zn2+ can lead to evolution of emission peaks, and the green band at 500 nm gradually shifts toward the blue side at 455 nm. The corresponding ratiometric signal changes ( I455/ I500) can accurately determine the Zn2+ concentration and the limit of detection is calculated to be 0.17 μM in the linear range between 1 and 100 μM. In this research, a molecular logic gate (AND) system has been well established by using SA and Zn2+ as two inputs. The fluorescence emission changes based on SiQDs will shed new light on the development of functional sensors at the nanoscale level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call