Abstract
Efficient and rapid detection of angiotensin-converting enzyme (ACE) activity is important for preventing hypertension and the discovery of new angiotensin-converting enzyme inhibitors (ACEI). In this work, a single-excitation and double-emission biomass-derived carbon quantum dots (CQDs) was prepared and applied for ratiometric fluorescence detection of ACE. Fresh banyan leaves were extracted with ethanol and acetone, and the extracted solution was used as the precursor to produce the carbon quantum dots (BL-CQDs) with single-excitation and double-emission properties. The synthesized BL-CQDs is about 1.7 nm, has a graphene-like structure, contains a variety of hydrophilic functional groups on the surface, and has good fluorescence properties. Its fluorescence intensity ratio (I677/I460) is linear with ACE activity in the range of 0.02–0.8 U l−1. The regression equation is △F=2.5371 C ACE -0.0311. The method was successfully applied to the determination of ACE activity in pig lung and human serum, and the inhibitory efficiency of the flavonoid extract and captopril tablets on ACE activity was also investigated, which can be applied to the screening of ACEI. The survival rate and fluorescence imaging of Bel-7404 cells under the condition of high concentration BL-CQDs showed BL-CQDs had low cytotoxicity and good biocompatibility. These results indicate that the BL-CQDs can be used as an excellent fluorescent probe, providing a new method for screening ACE activity and plant-derived ACEI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.