Abstract
Overproduction of reactive oxygen species (ROS) results in oxidative stress, which is closely associated with pathogenesis of many diseases. Visualized detection of ROS in situ enables deeper insight into the mechanisms that underlie such pathological and physiological processes. Among reactive species, selective detection of hydroxyl radical is the most challenging, due to high aggression and short life time of this specie. In this regard, we have developed a sensitive and selective ratiometric fluorescence nanoprobe for detection of hydroxyl radical. This probe is based on use of GUMBOS (a Group of Uniform Materials Based on Organic Salts) that are derived from 1,1′-diethyl-2,2′-cyanine iodide and 1,1′-diethyl-2,2′-carbocyanine iodide. Each GUMBOS exhibit different reactivity towards reactive species. Without any chemical linkage, these two GUMBOS were combined into a single nanomaterial to produce a ratiometric fluorescent sensing profile through Förster resonance energy transfer. This cyanine-based ratiometric nanoprobe exhibited high selectivity for the hydroxyl radical in comparison to other ROS, including superoxide anion, singlet oxygen, hydrogen peroxide, and peroxynitrite. Furthermore, detection of hydroxyl radical was successfully demonstrated by use of these binary nanoGUMBOS in vitro using hormone-independent human breast adenocarcinoma cells (MDA-MB-231).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.