Abstract

This work proposed ratiometric fluorescence capillary sensing system-integrated molecular imprinting with highly sensitive and selective detection for two biological indicators of Parkinson's disease (homovanillic acid (HVA) and Al3+). In this research, the silicon carbon quantum dot and the near-infrared CdTe quantum dot as luminescence sources were doped to an imprinted layer, which was attached to the inner surface wall of an amino-functionalized capillary. The fluorescence emissions of the ratiometric fluorescence capillary-imprinted sensor at 434 and 707 nm were quenched by HVA, and only the fluorescence emission at 434 nm was quenched by Al3+. Ratiometric fluorescence capillary sensing system-integrated molecular imprinting was used to detect simultaneously HVA and Al3+ with linearity over 1.0 × 10-9-2.5 × 10-7 and 1.0 × 10-9-1.1 × 10-7 M, respectively. The sensor showcased detection limitations of 8.7 × 10-10 and 9.8 × 10-10 M, indicating that the ratiometric fluorescence capillary sensing system-integrated molecular imprinting had great potential application for detecting HVA and Al3+ in serum and urine samples. The ratiometric fluorescence capillary sensing system-integrated molecular imprinting achieved highly sensitive and selective detection of HVA and Al3+ with a microvolume test dosage of 18 μL, which provided a new way for early diagnosis and disease monitoring of Parkinson's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.