Abstract

In order to realize the ultra sensitive detection of Neuron specific enolase (NSE) in human serum, we chose electrochemical immunosensor as a simple analytical method. During the experiment, we found that the peak value signals of Cu-MOFs-Au and Fc-L-Cys were significantly changed at −0.20 V and 0.20 V potentials by DPV. So a ratiometric electrochemical immunosensor for quantitative analysis of NSE was prepared for Cu-MOFs-Au as the electrode sensing surface and Fc-L-Cys as the label of Ab2. The data and performances of the immunosensor were tested and analyzed by DPV. Cu-MOFs not only provide the required signal for the immunosensor, but also have a large specific surface area, which can provide more sites for the placement of Au nanoparticles. L-cysteine (L-Cys) can prevent a large amount of Fc-COOH leakage, so that Fc+ can stably provide another required signal. With the beefing up of NSE concentration, redox peak of Cu-MOFs-Au decreased and that of Fc-L-Cys raised. The ratio (ΔI=ΔICu/ΔIFc) of two different signals was linear with the logarithm of NSE concentration in a certain value range. In brief, with the optimized experimental conditions, the immunosensor showed excellent performance in the concentration range of 1 pg/mL to 1 μg/mL, and the detection limit was 0.011 pg/mL. Compared with other immunosensors, it showed an unexpected high sensitivity. This method also provided a new idea for the ultra sensitive quantitative detection of other biomarkers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.