Abstract

Combination therapy is a promising treatment for certain advanced drug-resistant cancers. Although effective inhibition of various tumor cells was reported in vitro, combination treatment requires improvement in vivo due to uncontrolled ratiometric delivery. In this study, a tumor-targeting lipodisk nanoparticle formulation was developed for ratiometric loading and the transportation of two hydrophobic model drugs, doxorubicin (DOX) and paclitaxel (PTX), in one single platform. Furthermore, a slightly acidic pH-sensitive peptide (SAPSP) incorporated into lipodisks effectively enhanced the tumor-targeting and cell internalization. The obtained co-loaded lipodisks were approximately 30 nm with a pH-sensitive property. The ratiometric co-delivery of two drugs via lipodisks was confirmed in both the drug-resistant MCF-7/ADR cell line and its parental MCF-7 cell line in vitro, as well as in a tumor-bearing mouse model in vivo compared with a cocktail solution of free drugs. Co-loaded lipodisks exerted improved cytotoxicity to tumor cells in culture, particularly to drug-resistant tumor cells at synergistic drug ratios. In an in vivo xenograft mouse model, the anti-tumor ability of co-loaded lipodisks was evidenced by the remarkable inhibitory effect on tumor growth of either MCF-7 or MCF-7/ADR tumors, which may be attributed to the increased and ratiometric accumulation of both drugs in the tumor tissues. Therefore, tumor-specific lipodisks were crucial for the combination treatment of DOX and PTX to completely exert a synergistic anti-cancer effect. It is concluded that for co-loaded lipodisks, cytotoxicity data in vitro could be used to predict their inhibitory activity in vivo, potentially enhancing the clinical outcome of synergistic therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call