Abstract

As the most abundant catecholamine neurotransmitter in the brain, dopamine plays an important role in the normal physiological process, and its level in urine also changes during human pathological processes. In clinic, the detection of dopamine in urine is a potential marker for the diagnosis and the treatment of endocrine-related diseases. In this work, a copper metal organic framework with catecholase-like activity was prepared via the precipitation of Cu2+ and imidazole, simulating the N-Cu coordination environment in the active site of catecholase. Cu-MOF (the copper–metal organic framework) can catalyze the oxidation of DA (dopamine) to dopaquinone using O2 in the air. The oxidation product can further react with 1,3-dihydroxynaphthalene to produce a fluorophore product. Based on the above reaction, a multimodal sensing platform with three signal outputs, including ratio-metric fluorescence, absorbance and digital information extracted from smartphone images for simple and sensitive determination of DA, was proposed, with detection limits of 0.0679, 0.3206, and 0.3718 μM, respectively. This multimodal sensing platform was able to detect DA in body fluid in a self-correcting way, as demonstrated by the successful determination of DA in normal human urine samples, and samples with a high level of interference.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call