Abstract
As a promising downlink multiple access scheme, Rate-Splitting Multiple Access (RSMA) has been shown to achieve superior spectral and energy efficiencies compared with SpaceDivision Multiple Access (SDMA) and Non-Orthogonal Multiple Access (NOMA) in downlink single-cell systems. By relying on linearly precoded rate-splitting at the transmitter and successive interference cancellation at the receivers, RSMA has the capability of partially decoding the interference and partially treating the interference as noise, and therefore copes with a wide range of user deployments and network loads. In this work, we further study RSMA in downlink Coordinated Multi-Point (CoMP) Joint Transmission (JT) networks by investigating the optimal beamformer design to maximize the Weighted Sum-Rate (WSR) of all users subject to individual Quality of Service (QoS) rate constraints and per base station power constraints. Numerical results show that, in CoMP JT, RSMA achieves significant WSR improvement over SDMA and NOMA in a wide range of inter-user and inter-cell channel strength disparities. Specifically, SDMA (resp. NOMA) is more suited to deployments with little (resp. large) inter-user channel strength disparity and large (resp. little) inter-cell channel disparity, while RSMA is suited to any deployment. We conclude that RSMA provides rate, robustness and QoS enhancements over SDMA and NOMA in CoMP JT networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.