Abstract

The reaction C2 H3+H2→C2H4+H has been studied by different direct ab initio approaches. Accurate rate constants in the temperature range 200–1200 K have been derived by time-independent scattering theory, employing R-matrix propagation on a 2D reduced dimensional G3B3 potential energy surface. Reported experimental reaction rates at room temperature vary over 3 orders of magnitude as they have to be determined indirectly. The computed room temperature rate of 2.1× 10 − 18 cm3 molecule−1 s−1 in this study should remove this ambiguity. At higher temperatures the calculated rates meet experimental rates from direct measurements very well. The use of a reduced dimensionality model is justified by comparing full-dimensional semiclassical tunnelling contributions to those derived on a 2D potential with the same method. The employed semiclassical approach (small curvature tunnelling) yields very similar rates to the scattering approach, thus showing that small curvature tunnelling is a very reliable method to describe reactions like these.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.