Abstract

The discovery that hemoglobin (Hb) in erythrocytes contains a fraction of β-Cys-93 thiols as the nitrosylated derivative (HbSNO) led to the suggestion that this species is involved in transporting and releasing nitric oxide, which is the signal for local vasodilation. The release of NO from HbSNO requires an electron transfer to facilitate release and to regenerate the cysteine thiol via one-electron reduction in the absence of added thiols. An alternative mechanism, which has received much attention, transfers the nitrosyl group to an external thiol, which in turn would have to be reduced. The observed first order rate constant for the spontaneous oxidation of the ferrous heme of deoxy HbSNO is 1.0×10 −4 s −1 in the absence of thiols. Under the same conditions, native Hb is stable. The oxidation of HbSNO occurs with the same rate constant that can be derived for the rate reported for the formation of HbNO from HbSNO. These similarities suggest that both processes involve the same reaction: internal electron transfer and direct release of nitric oxide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.