Abstract

Among 10 C4 species having a wide range in photosynthetic activity, the rates of photosynthesis/leaf area under high light were examined and compared with the chlorophyll and soluble protein content and the activities of several photosynthetic enzymes. The species examined were Digitaria sanguinalis, Echinochloa crus-galli, Microstegium vimineum, Panicum capillare, Panicum miliaceum, Paspalum dilatatum, Paspalum notatum, Pennisetum purpureum, Setaria lutescens, and Zea mays. The photosynthetic rates per unit leaf area ranged from 10 to 38 �mol CO2 fixed m-2 s-1. Among the 10 species there was a high degree of correlation of rate of photosynthesis/leaf area with soluble protein (r = 0.88), ribulose 1,5-bisphosphate carboxylase (r = 0.88) and pyruvate,PI dikinase (r = 0.94), but a lower correlation of photosynthetic rate/leaf area with phosphoenolpyruvate carboxylase (r = 0.74) and no significant correlation of photosynthetic rate/leaf area with chlorophyll content (r = 0.56). Among eight species of the NADP-malic enzyme C4 subgroup, there was a good correlation of photosynthetic ratelleaf area with NADP-malate dehydrogenase (r = 0.88) and NADP- malic enzyme (r = 0.92). Extractable activities of both the ribulose 1,5-bisphosphate carboxylase and the dikinase were generally close to the rate of photosynthesis. When comparing the activity per unit leaf area of one enzyme with another, generally a high degree of correlation was found among the species. The results suggest that a given C4 species tends to maintain a balance in the activities of several photosynthetic enzymes and that there is potential to estimate capacity for C4 photosynthesis under high light through determining activity of certain photosynthetic enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.