Abstract
Peridotitic mantle xenoliths from historic and prehistoric eruptions on La Palma show many similarities. Prolonged reactions of the xenoliths with their host magmas have been used to place constraints on the magma transport system beneath the island. All xenoliths show crystalline selvages and 0.9–2.6 mm wide diffusion zones in olivine along most of their surface. Diffusion kinetics in olivine, combined with fluid inclusion barometry, document that selvages and diffusion zones formed at crustal levels within 8 to about 100 years. Some xenolith fractures lack selvages and were in contact with the host magma for less than 4 days. A multistage magma ascent is proposed: (i) peridotite wall rock was fragmented and became incorporated into the ascending magma years to decades prior to the eruption; (ii) the xenoliths were rapidly transported to, and deposited in, crustal magma reservoirs, forming selvages and diffusion zones at the xenolith rims; (iii) renewed fragmentation of the xenoliths occurred days to hours prior to eruption, possibly by decompressive strain fracturing during rapid ascent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.