Abstract

Rates of homogeneous nucleation of H2O droplets in a temperature range from 236.37 to 237.91 K and of D2O droplets from 241.34 to 242.33 K were measured. The single microdroplets consisted of pure H2O or D2O and were levitated in an electrodynamic balance. In comparison to H2O, D2O shows a stronger tendency to nucleate. Over the investigated temperature interval, D2O droplets need to be supercooled less by 1.1 K compared to H2O droplets in order to arrive at the same nucleation rate. This is in good agreement with the higher degree of intermolecular association in liquid D2O, a fact which has been well established previously both from theory and experimental studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.