Abstract
We provide the first rate of convergence to stationarity analysis for reflected Brownian motion (RBM) as the dimension grows under some uniformity conditions. In particular, if the underlying routing matrix is uniformly contractive, uniform stability of the drift vector holds, and the variances of the underlying Brownian motion (BM) are bounded, then we show that the RBM converges exponentially fast to stationarity with a relaxation time of order [Formula: see text] as the dimension d → ∞. Our bound for the relaxation time follows as a corollary of the nonasymptotic bound we obtain for the initial transient effect, which is explicit in terms of the RBM parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.