Abstract

We analyze the local and global smoothing rates of the smoothing process and obtain convergence rates to stationarity for the dual process known as the potlatch process. For general finite graphs we connect the smoothing and convergence rates to the spectral gap of the associated Markov chain. We perform a more detailed analysis of these processes on the torus. Polynomial corrections to the smoothing rates are obtained. They show that local smoothing happens faster than global smoothing. These polynomial rates translate to rates of convergence to stationarity in L2-Wasserstein distance for the potlatch process on Zd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.