Abstract

Pore water chemical data obtained from a 10.5-m long giant gravity core collected in methane-rich sediments from 647 m water depth in the northern Gulf of Mexico (N 28°04.00′ W 89°43.15′) defines sub-bottom gradients in unprecedented detail. This core penetrated the sulfate-methane interface (SMI) at ∼ 300 cm below the seafloor (cmbsf). At the SMI dissolved inorganic carbon (DIC) concentrations reach a maximum (13.5 mM) and pore water δ 13C DIC (− 63.2‰ PDB) and δ 13C methane (− 89.5‰ PDB) values are most negative. Below the SMI pore water sulfate is nearly depleted, methane concentrations rise sharply with simultaneous occurrence of a bubble-textured sediment, and fine-grained methane-derived authigenic carbonate nodules and cements are common. The sharp peaks in DIC concentration and isotope values centered at the SMI indicate that DIC is being produced by anaerobic oxidation of methane (AOM) within a narrow zone centered at the SMI. The detailed sulfate and DIC concentration profiles, and DIC δ 13C values have enabled geochemical models to be constructed that explore the rate of DIC formation by AOM and its effect on pore water DIC δ 13C values. Model results closely match measured DIC concentration and δ 13C isotope profiles and indicate that microbiological conversion of methane carbon to DIC is rapid in geologic terms and that AOM is occurring at the present position of the SMI. Isotope values for authigenic carbonate found immediately below the present-day SMI ( δ 13C = − 60.2 ± 0.7‰ PDB at 440 cmbsf) are consistent with derivation of the carbonate carbon from methane via AOM at the former location of a SMI. These observations and model results suggest that AOM is occurring at rates that would generate the observed profiles and begin the precipitation of methane-derived carbonate occur on time-scales of centuries. Model results also show that the time needed to produce the resulting authigenic cements is an order of magnitude greater than that for AOM to produce the observed DIC profiles. The metabolic rates for DIC production by AOM inferred from modeling the geochemical profiles compare favorably with available rate data obtained from laboratory microbial incubations and radiolabeled tracer experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.