Abstract

Denitrification and anammox are the main pathways of N loss in wet habitats while their relative contribution to N2 production and underlying microbial mechanisms across marine-terrestrial ecotone remain unclear. Here we investigated the rates of anammox and denitrification, and the distribution patterns of anammox bacteria and nosZ clade I and II denitrifiers across coastal tidal flat to inland paddy soils. Results showed that denitrification dominated the N2 production over anammox in all samples, accounting for 87.1%–100% of total N2 production. Coincident with the rate, the abundance of nosZ clade I and II genes were 1–2 orders of magnitude higher than those of hzsB gene. The community of anammox bacteria was mainly driven by salinity while nosZ clade I and II denitrifiers communities were mainly determined by both salinity and pH. Alphaproteobacteria dominated in the nosZ clade I community in all samples while Betaproteobacteria and Gammaproteobacteria were mainly present in low salinity wetland and paddy soils. The nosZ clade II community was composed of more phyla, in which Bacteoidetes and Chloroflexi were ubiquitous while Gemmatimonadetes was present only in low salinity wetland and paddy soils. These findings have direct implications for explicitly incorporating both nosZ clade I and II into future N loss estimation and N2O mitigation in marine-terrestrial ecotone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.