Abstract

This FTIR study focuses on solid-state chemistry associated with formation and interconversion of the ionic HX (X = Cl, Br) hydrates. Kinetic data are reported for conversions of ice nanocrystal arrays exposed to the saturation pressure of the acids in the 110 approximately 125 K range. The product is amorphous acid dihydrate in the case of HBr, and amorphous monohydrate for HCl. The rate-determining step is identified as HX diffusion through the hydrate product crust toward the interfacial reaction zone, rather than diffusion through ice, as commonly believed. Slowing of the conversion process is thus observed with increasing thickness of the crust. The diffusion coefficient (D(e)) and activation energy values for HX diffusion through the hydrates were evaluated with the help of the shrinking-core model. Hydrate crystallization occurs as a separate step, upon heating above 130 K. Subsequently, rates of reversible transitions between crystal di- and monohydrates were observed upon exposure to acid vapor and acid evacuation. In conversion from di- to monohydrate, the rate slows after fast formation of several layers; subsequently, diffusion through the product crust appears to be the rate-controlling step. The activation energy for HBr diffusion through crystal dihydrate is found to be significantly higher than that for the amorphous analogue. Conjecture is offered for a molecular mechanism of HX transport through the crystal hydrate, based on (i) spectroscopic/computational evidence for the presence of molecular HX bonded to X(-) in each of the ionic hydrate phases and (ii) the relative E(a) values found for HBr and HCl diffusion. Monte Carlo modeling suggests acid transport to the reaction zone along boundaries between "nanocrystallites" generated by multiple hydrate nucleation events at the particle surfaces. The reverse conversion, of crystalline monohydrate particles to the dihydrate phase, as well as dihydrate to trihydrate, displays nearly constant rate throughout the particle conversion; suggesting desorption of HX from the particle surface as the rate-limiting factor. Like for D(e), the activation energies for desorption were found to be approximately 20% greater for HCl than HBr for related hydrate phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.