Abstract
We consider Bayesian inference for a monotone density on the unit interval and study the resulting asymptotic properties. We consider a “projection-posterior” approach, where we construct a prior on density functions through random histograms without imposing the monotonicity constraint, but induce a random distribution by projecting a sample from the posterior on the space of monotone functions. The approach allows us to retain posterior conjugacy, allowing explicit expressions extremely useful for studying asymptotic properties. We show that the projection-posterior contracts at the optimal n−1/3-rate. We then construct a consistent test based on the posterior distribution for testing the hypothesis of monotonicity. Finally, we obtain the limiting coverage of a projection-posterior credible interval for the value of the function at an interior point. Interestingly, the limiting coverage turns out to be higher than the nominal credibility level, the opposite of the undercoverage phenomenon observed in a smoothness regime. Moreover, we show that a recalibration method using a lower credibility level gives an intended limiting coverage. We also discuss extensions of the obtained results for densities on the half-line. We conduct a simulation study to demonstrate the accuracy of the asymptotic results in finite samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.