Abstract

Perturbation bounds for singular spaces, in particular Wedin’s $\mathop{\mathrm{sin}}\nolimits \Theta$ theorem, are a fundamental tool in many fields including high-dimensional statistics, machine learning and applied mathematics. In this paper, we establish separate perturbation bounds, measured in both spectral and Frobenius $\mathop{\mathrm{sin}}\nolimits \Theta$ distances, for the left and right singular subspaces. Lower bounds, which show that the individual perturbation bounds are rate-optimal, are also given. The new perturbation bounds are applicable to a wide range of problems. In this paper, we consider in detail applications to low-rank matrix denoising and singular space estimation, high-dimensional clustering and canonical correlation analysis (CCA). In particular, separate matching upper and lower bounds are obtained for estimating the left and right singular spaces. To the best of our knowledge, this is the first result that gives different optimal rates for the left and right singular spaces under the same perturbation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.