Abstract
SummaryIn this paper, we consider a rateless coded Orthogonal Frequency Division Multiplexing (OFDM) system under a quasistatic fading channel. During each transmission round, transmitter keeps transmitting to the receiver using Raptor code until the receiver feeds back an acknowledgement (ACK). On the other hand, frequency offset between the transmitter and receiver ruins the orthogonality of OFDM subcarriers and cause intercarrier interference (ICI). We resort to ICI self‐cancelation precoding to combat ICI, wherein the data symbol vectors are multiplied with some precoding matrix before transmission. To improve the system robustness, we jointly optimize the precoding matrix and the degree profile of Raptor code, with only statistical channel state information (CSI) being assumed at the transmitter. The optimization problem is formulated based on the extrinsic information transfer (EXIT) analysis of the decoding process at the receiver. The advantage of the proposed design is that the instant CSI is not required at the transmitter, which reduces the system overhead. Simulation results verify that the proposed scheme with the optimized precoding matrix and degree profile can effectively combat ICI and achieve good performance both in bit error ratio (BER) and average transmission rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.