Abstract

The hysteretic behavior of many-particle systems with non-convex free energy can be modeled by nonlocal Fokker–Planck equations that involve two small parameters and are driven by a time-dependent constraint. In this paper we consider the fast reaction regime related to Kramers-type phase transitions and show that the dynamics in the small-parameter limit can be described by a rate-independent evolution equation with hysteresis. For the proof we first derive mass-dissipation estimates by means of Muckenhoupt constants, formulate conditional stability estimates, and characterize the mass flux between the different phases in terms of moment estimates that encode large deviation results. Afterwards we combine all these partial results and establish the dynamical stability of localized peaks as well as sufficiently strong compactness results for the basic macroscopic quantities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call