Abstract

BackgroundExplaining the reduction of hydrolysis rate during lignocellulose hydrolysis is a challenge for the understanding and modelling of the process. This article reports the changes of cellulose and lignin surface areas, porosity and the residual cellulase activity during the hydrolysis of autohydrolysed wheat straw and delignified wheat straw. The potential rate-constraining mechanisms are assessed with a simplified kinetic model and compared to the observed effects, residual cellulase activity and product inhibition.ResultsThe reaction rate depended exclusively on the degree of hydrolysis, while enzyme denaturation or time-dependent changes in substrate hydrolysability were absent. Cellulose surface area decreased linearly with hydrolysis, in correlation with total cellulose content. Lignin surface area was initially decreased by the dissolution of phenolics and then remained unchanged. The dissolved phenolics did not contribute to product inhibition. The porosity of delignified straw was decreased during hydrolysis, but no difference in porosity was detected during the hydrolysis of autohydrolysed straw.ConclusionsAlthough a hydrolysis-dependent increase of non-productive binding capacity of lignin was not apparent, the dependence of hydrolysis maxima on the enzyme dosage was best explained by partial irreversible product inhibition. Cellulose surface area correlated with the total cellulose content, which is thus an appropriate approximation of the substrate concentration for kinetic modelling. Kinetic models of cellulose hydrolysis should be simplified enough to include reversible and irreversible product inhibition and reduction of hydrolysability, as well as their possible non-linear relations to hydrolysis degree, without overparameterization of particular factors.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0431-3) contains supplementary material, which is available to authorised users.

Highlights

  • Explaining the reduction of hydrolysis rate during lignocellulose hydrolysis is a challenge for the understanding and modelling of the process

  • Hydrolysis reactions Enzymatic hydrolysis was performed to autohydrolysed straw (AH-straw, 51.7 % glucan, 3.4 % xylan, 30 % Klason lignin) and NaOH-delignified straw (NaOH-straw, 78.9 % glucan, 10.3 % xylan, 3.8 % Klason lignin) with an enzyme dosage of 10 filter paper unit (FPU) g−1 for 72 h

  • First the AH-straw was hydrolysed with 2 FPU g−1 for 72 h, reaching almost half of the degree of hydrolysis obtained with 10 FPU g−1, which reflected the non-linear correlation of hydrolysis degree to cellulase dosage [2, 3]

Read more

Summary

Introduction

Explaining the reduction of hydrolysis rate during lignocellulose hydrolysis is a challenge for the understanding and modelling of the process. Hydrolysis of lignocellulose materials by cellulases is conceived as a complex, heterogenous multi-enzyme process with several inhibitory mechanisms, changing substrate properties and the kinetics generally obscured by several non-linearities. This is a challenge for fundamental understanding, as well as for process design in Pihlajaniemi et al Biotechnol Biofuels (2016) 9:18 lignin-containing substrates, it occurs with pure cellulose [4, 5]. Adsorption on lignin has been suggested to occur gradually [7], adsorption on actual lignocellulose substrates is fast compared to the common reaction times of several days, reaching equilibrium in less than an hour [16] and thereafter depending on the degree of hydrolysis [4, 17]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call