Abstract
Rate-adaptive optical transmission techniques adjust information bit rate based on transmission distance and other factors affecting signal quality. These techniques enable increased bit rates over shorter links, while enabling transmission over longer links when regeneration is not available. They are likely to become more important with increasing network traffic and a continuing evolution toward optically switched mesh networks, which make signal quality more variable. We propose a rate-adaptive scheme using variable-rate forward error correction (FEC) codes and variable constellations with a fixed symbol rate, quantifying how achievable bit rates vary with distance. The scheme uses serially concatenated Reed-Solomon codes and an inner repetition code to vary the code rate, combined with singlecarrier polarization-multiplexed M-ary quadrature amplitude modulation (PM-M-QAM) with variable M and digital coherent detection. A rate adaptation algorithm uses the signal-to-noise ratio (SNR) or the FEC decoder input bit-error ratio (BER) estimated by a receiver to determine the FEC code rate and constellation size that maximizes the information bit rate while satisfying a target FEC decoder output BER and an SNR margin, yielding a peak rate of 200 Gbit/s in a nominal 50-GHz channel bandwidth. We simulate single-channel transmission through a long-haul fiber system incorporating numerous optical switches, evaluating the impact of fiber nonlinearity and bandwidth narrowing. With zero SNR margin, we achieve bit rates of 200/100/50 Gbit/s over distances of 650/2000/3000 km. Compared to an ideal coding scheme, the proposed scheme exhibits a performance gap ranging from about 6.4 dB at 650 km to 7.5 dB at 5000 km.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.