Abstract

Rate-Splitting Multiple Access (RSMA) has recently found favor in high-mobility scenarios due to the benefits of relaxing the accuracy of Channel State Information at the Transmitter (CSIT) while maintaining high spectral efficiency. These benefits are particularly important in Satellite-Vehicular Networks (SVNs), where the mobility of the vehicles significantly affects the estimation accuracy of the CSIT. To tackle this challenge, we propose an RSMA-based satellite-vehicular communication system for reliable data transmission. Specifically, we investigate the outage probability of the RSMA-based satellite-vehicular communication system under the Shadowed-Rician model. Considering the satellite-vehicular communication outage problem, an optimization problem is formulated to maximize the Weighted Sum Rate (WSR) of the communication system. However, due to communication overhead and privacy concerns, not all vehicles are willing to participate in interference management. In this study, we exploit an incentive mechanism to efficiently solve this problem. Specifically, we formulated a non-cooperative game to motivate users to report the CSIT and participate in the power allocation. In addition, we have proved the existence and uniqueness of Nash Equilibrium (NE) in the game formulated. Our simulation results show that the proposed non-cooperative game theoretical approach achieves the effectiveness of the RSMA-based satellite-vehicular system. The game theoretical framework is shown to motivate users to participate in interference management, so as to maximize their transmission rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call