Abstract

Phase transition is a core content of black hole thermodynamics. This study adopted the Kramer’s escape rate method for describing the Brownian motion of particles in an external field to investigate the intensity of the phase transition between small and large black hole states. Some existing studies mostly focused on the formal analysis of the thermodynamic phase transition of black holes, but they neglected the detailed description of the phase transition process. Our results show that the phase transition between small and large black holes for charged anti-de Sitter (AdS) black holes presents serious asymmetric features, and the overall process is dominated by the transition from a small black hole to a large black hole. This study filled a research gap of a stochastic process analysis on the issue of the first-order phase transition rate in the AdS black hole.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.