Abstract
Correlations between leaf abscisic acid concentration ([ABA]), stomatal conductance (gs), rate of stomatal opening in response to an increase in leaf water potential (si), shoot hydraulic conductance (L) and photosynthetic characteristics were examined in saplings of six temperate deciduous tree species: Acer platanoides L., Padus avium Mill., Populus tremula L., Quercus robur L., Salix caprea L. and Tilia cordata Mill. Species-specific values of foliar [ABA] were negatively related to the mean values of gs, si, L and light- and CO2- saturated net photosynthesis (P(max)), thus providing strong correlative evidence of a scaling of foliar gas exchange and hydraulic characteristics with leaf endogenous [ABA]. In addition, we suggest that mean gs, si, L and Pmax for mature leaves may partly be determined by the species-specific [ABA] during leaf growth. The most drought-intolerant species had the lowest [ABA] and the highest gs, suggesting that interspecific differences in [ABA] may be linked to differences in species-specific water-use efficiency. Application of high concentrations of exogenous ABA led to large decreases in gs, si and P(max), further underscoring the direct role of ABA in regulating stomatal opening and photosynthetic rate. Exogenous ABA also decreased L, but the decreases were considerably smaller than the decreases in gs, si and Pmax. Thus, exogenous ABA predominantly affected the stomata directly, but modification of L by ABA may also be an important mechanism of ABA action. We conclude that interspecific variability in endogenous [ABA] during foliage growth and in mature leaves provides an important factor explaining observed differences in L, gs, si and Pmax among temperate deciduous tree species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.