Abstract

Cartilage tissue engineering typically involves the culture of isolated chondrocytes within a scaffold material. The oxygen tension within the engineered tissue is known to be an essential parameter for implant success. This will be sensitive to the oxygen consumption behavior of the embedded chondrocytes, which remains to be characterized. We report that the oxygen consumption of bovine articular chondrocytes is sensitive to glucose deprivation below 2.7 mM, increasing from a basal level of 9.6x10(-16) to <18.4x10(-16) mol/cell.h in 1.3 mM glucose. Further studies examined the influence of selecting high (18.4 mM) or low (5.1 mM) glucose medium on the oxygen tension in 2 mm thick cellular agarose constructs. A relative upregulation of oxygen consumption was observed in constructs cultured in low glucose medium. This resulted in the near-anoxic oxygen concentration of 5 microM oxygen in constructs seeded with 40x10(6) cells/ml, compared to 57 microM in the corresponding high glucose culture. The upregulation of oxygen consumption generally corresponded to the inhibition of glycolysis, which is consistent with the Crabtree phenomenon. Medium osmolarity (316-600 mOsm) had minimal effects on chondrocyte oxygen consumption rate. In conclusion, glucose availability is a critical parameter that regulates the oxygen tension within tissue engineered constructs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call