Abstract
Postcopulatory sperm competition is a key aspect of sexual selection and is believed to drive the rapid evolution of both reproductive physiology and reproduction-related genes. It is well-established that mating behavior determines the intensity of sperm competition, with polyandry (i.e., female promiscuity) leading to fiercer sperm competition than monandry. Studies in mammals, particularly primates, showed that, owing to greater sperm competition, polyandrous taxa generally have physiological traits that make them better adapted for fertilization than monandrous species, including bigger testes, larger seminal vesicles, higher sperm counts, richer mitochondrial loading in sperm and more prominent semen coagulation. Here, we show that the degree of polyandry can also impact the dynamics of molecular evolution. Specifically, we show that the evolution of SEMG2, the gene encoding semenogelin II, a main structural component of semen coagulum, is accelerated in polyandrous primates relative to monandrous primates. Our study showcases the intimate relationship between sexual selection and the molecular evolution of reproductive genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.