Abstract

BackgroundThe spinal column including its vertebrae and disks has been well examined and extensively reported in relation to age-aggregated degeneration. In contrast, paravertebral muscles are poorly represented in describing normative degeneration. Increasing evidence points to the importance of paravertebral muscle quality in low back health, and their potential as a modifiable factor in low back pain (LBP). Studies examining normative decline of paravertebral muscles are needed to advance the field’s etiological understanding. With a novel approach and based on published data, we establish and compare decline rates of imaging features for degeneration of lumbar vertebrae and disks, versus fatty infiltration in paravertebral muscles in asymptomatic adults.MethodsOur cross-sectional simulation study examined age-aggregated data from three published studies who reported on asymptomatic adults spanning 18–60 years. Prevalence rates of imaging degenerative features of the spinal column were examined via logistic regression and compared with percentage fatty infiltration in erector spinae, multifidus and psoas using synthetic data and Monte Carlo simulation with 10,000 endpoint-specific regression iterations. General linear regression models were employed to estimate marginal effects of age reported as a one-year change rate (with 95 % confidence intervals) for comparisons between all reported spinal features.ResultsDeclines in multifidus (0.24 & 0.11 %/year), erector spinae (0.13 & 0.07 %/year), and psoas (0.04 %/year) occur at similarly slow rates to disk protrusion (0.25 %/year), annular fissure (0.15 %/year), and spondylolisthesis (0.29 %/year). Multifidus showed a trend for faster decline than erector spinae, particularly in men. Of the features examined, disk signal loss declined fastest, and psoas muscle the slowest.ConclusionsDegeneration of lumbar paravertebral muscles occurs slowly in asymptomatic adults, with a tendency to be most pronounced in multifidus. Rate of decline of spinal structures represents a novel variable that warrants inclusion as a known feature of the expected degenerative cascade, and to provide a basis for comparison to diseases of the spine in research and clinical practice. Concurrent examination of spinal features using advanced imaging to improve muscle analysis would be a strong addition to the field.

Highlights

  • The spinal column including its vertebrae and disks has been well examined and extensively reported in relation to age-aggregated degeneration

  • Based on published age-aggregated information (Table 1), we determined the marginal effect of age with corresponding 95 % confidence intervals (CI) for each degenerative feature as follows: For the Brinjikji et al [3] study that reported prevalence rates for eight degenerative features, a sample of observations for each of the degenerative features corresponding to the summed total of subjects in the first four age groups from their study was created

  • While CIs were overlapping, MF showed a trend for faster decline than

Read more

Summary

Introduction

The spinal column including its vertebrae and disks has been well examined and extensively reported in relation to age-aggregated degeneration. Increasing evidence points to the importance of paravertebral muscle quality in low back health, and their potential as a modifiable factor in low back pain (LBP). Low back pain (LBP) causes more global disability and lost healthy years than any other condition [1]. It is a common health problem forecast to have a wider societal impact alongside an increasingly ageing population [2]. Identifying modifiable risk factors associated with LBP is important in influencing the disease, and necessary in understanding its etiology to develop targeted and effective interventions. The importance of paravertebral muscles in optimizing back health is increasingly acknowledged and investigations determining normative degenerative change and muscles’ capacity to influence the course of recovery of LBP are needed

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call