Abstract

Although the major pathological feature of chronic mitral valve disease is mitral regurgitation, myocardial dysfunction has been suggested to be present in dogs with chronic mitral valve disease. However, accurate assessment of myocardial function remains challenging. Doppler-derived rate of left ventricular pressure change is a simple, less load-dependent method for evaluating myocardial function. We aimed to evaluate Doppler-derived rate of left ventricular pressure change for assessing myocardial function in different stages of dogs with chronic mitral valve disease. This analytical cross-sectional study recruited 55 client-owned dogs with chronic mitral valve disease prospectively. Based on physical examination, indirectly measured blood pressure, routine hematologic and biochemistry examinations, thoracic radiography, electrocardiography, and echocardiography, dogs were diagnosed as mitral valve disease and excluded for systemic diseases and other cardiac diseases. They were classified according to the International Small Animal Cardiac Health Council scales. Doppler-derived rates of left ventricular pressure rise and fall (dP/dt and -dP/dt) were analyzed by two investigators using continuous-wave Doppler imaging. Doppler-derived dP/dt was higher in dogs of class IIIa than in those of the other classes, whereas values of -dP/dt decreased significantly with the severity of congestive heart failure. The peak velocity of the early diastolic wave and -dP/dt were identified as independent predictors of congestive heart failure. Our findings suggested that Doppler-derived dP/dt and -dP/dt, used in combination with conventional echocardiographic variables, could allow a better understanding of myocardial dysfunction and a possibility for prediction of the risk of heart failure in dogs with chronic mitral valve disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.