Abstract

Abstract The Eastern California shear zone (USA) is a broad zone of transtensional deformation related to the relative motion between the Pacific and North American plates. Due to its active deformation and seismicity, the zone receives great attention, with specific focus on slip rates of major active faults. To contribute to a better understanding of the long-term strain accumulation in this zone, this study quantifies the long-term E–W-directed extensional strain rate based on the analysis of N–S-trending normal fault scarps in the 765-k.y.-old Bishop tuff (Volcanic Tableland). The average extensional strain rate determined over the past 765 k.y. is 0.29 ± 0.10 mm/yr per 10 km (29 ± 10 nanostrain/yr) and similar to the current rate of elastic strain accumulation rate in the Volcanic Tableland (0.30 ± 0.13 mm/yr per 10 km; 30 ± 13 nanostrain/yr) determined by Global Positioning System (GPS) data. The present-day E–W strain rate across the entire Eastern California shear zone at the latitude of the Volcanic Tableland is 0.36 ± 0.05 mm/yr per 10 km (36 ± 5 nanostrain/yr). This suggests that the local rate of E–W extension has not changed significantly since the mid-Pleistocene. Furthermore, if the Volcanic Tableland is representative of the greater region, as the GPS data suggest, this would also indicate a constant extension rate across the Eastern California shear zone at the latitude of ~37.5°N over the 765 k.y. time period. These results suggest that late Pleistocene and Holocene extension rates of major faults in this zone can be interpreted in light of a presumably unchanged far-field stress system since at least the mid-Pleistocene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call