Abstract

This study presents the convergence and stability analysis of a recently developed fixed pivot technique for fragmentation equations (Liao et al. in Int J Numer Methods Fluids 87(4):202–215, 2018). The approach is based on preserving two integral moments of the distribution, namely (a) the zeroth-order moment, which defines the number of particles, and (b) the first-order moment, which describes the total mass in the system. The present methodology differs mathematically in a way that it delivers the total breakage rate between a mother and a daughter particle immediately, whereas existing numerical techniques provide the partial breakup rate of a mother and daughter particle. This affects the computational efficiency and makes the current model reliable for CFD simulations. The consistency and unconditional second-order convergence of the method are proved. This demonstrates efficiency of the method over the fixed pivot technique (Kumar and Warnecke in Numer Math 110(4):539–559, 2008) and the cell average technique (Kumar and Warnecke in Numer Math 111(1):81–108, 2008). Numerical results are compared against the cell average technique and the experimental order of convergence is calculated to confirm the theoretical order of convergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.